Refine Your Search

Topic

Search Results

Training / Education

Managing Energy Data: Advanced Analytics

Anytime
Introduction to Managing Energy Data: The Internet of Things (IoT) revolution (eg. the vast spread of smart meters worldwide) is generating massive amounts of energy data, drastically transforming the sector and current energy systems. This digital transformation gives rise to more intelligent ways of managing energy and brings about opportunities for energy companies to improve their business models and services. This course contains a brief introduction to the topics presented in the course, from smart meters and smart metering data to data science.
Magazine

SAE Truck & Off-Highway Engineering: October 2022

2022-10-06
eAxles gain traction OEMs are developing and testing axles with integrated electric powertrains to electrify trucks of all sizes. Securing CAN networks in commercial vehicles A CAN transceiver with built-in security functions can avoid the complexity of end-to-end security solutions that are especially hard to implement on CVs. Electrification is the future for defense vehicles Despite infrastructure challenges, electrified and automated military vehicles will save fuel and lives, said Allison's VP of Defense Programs at SAE COMVEC 2022. Editorial Hiring talent to meet high-tech demands Allison's now open for hydrogen testing Electrification's impact on commercial-vehicle chassis design Harbinger prepares to enter commercial market with novel eAxle ZF, Freudenberg developing integrated 'Powerpack' fuel cell and e-drive Freightliner's medium-duty makeover for M2 and SD models Toyota's hydrogen fuel-cell powertrain provides an electrifying ride
Standard

CAN FD Data Link Layer

2022-09-08
CURRENT
J1939-22_202209
The flexible data rate capability in CAN (commonly called CAN FD) is implemented as a transport layer in order to allow for functional safety, cybersecurity, extended transport capability, and backward compatibility with SAE J1939DA.
Best Practice

AVSC Best Practice for Interactions Between ADS-DVs and Vulnerable Road Users (VRUs)

2022-08-09
CURRENT
AVSC00009202208
AVSC Best Practice for Interactions Between ADS-DVs and Vulnerable Road Users (VRUs) AVSC00009202208 establishes common terminology and a baseline understanding of the challenges posed, and framework to evaluate automated driving system-dedicated vehicle (ADS-DV) interactions with VRUs. This best practice can facilitate communication among the industry and public, help calibrate expectations of all traffic participants, and improve broader acceptance of SAE level 4 and level 5 ADS-equipped vehicles.
Magazine

SAE Truck & Off-Highway Engineering: August 2022

2022-08-04
Deere advances in-field autonomy While stereo cameras and computer vision guide Deere's "limited- release" 8R autonomous tractor, Bear Flag's lidar tech will augment future machines. Positioning to centimeter-level improves agriculture Precision-navigation approaches that emphasize backward compatibility help farms reap more value from autonomous operations. Funding, mandates fuel commercial-vehicle electrification Legislators provide the impetus to electrify trucks and buses, leading to several engineering challenges.
Research Report

Legal Issues Facing Automated Vehicles, Facial Recognition, and Privacy Rights

2022-07-28
EPR2022016
Facial recognition software (FRS) is a form of biometric security that detects a face, analyzes it, converts it to data, and then matches it with images in a database. This technology is currently being used in vehicles for safety and convenience features, such as detecting driver fatigue, ensuring ride share drivers are wearing a face covering, or unlocking the vehicle. Public transportation hubs can also use FRS to identify missing persons, intercept domestic terrorism, deter theft, and achieve other security initiatives. However, biometric data is sensitive and there are numerous remaining questions about how to implement and regulate FRS in a way that maximizes its safety and security potential while simultaneously ensuring individual’s right to privacy, data security, and technology-based equality.
Standard

Requirements for Probe Data Collection Applications

2022-06-09
CURRENT
J2945/C_202206
Connected vehicles can provide data from multiple sensors that monitor both the vehicle and the environment through which the vehicle is passing. The data, when shared, can be used to enhance and optimize transportation operations and management—specifically, traffic flow and infrastructure maintenance. This document describes an interface between vehicle and infrastructure for collecting vehicle/probe data. That data may represent a single point in time or may be accumulated over defined periods of time or distance, or may be triggered based on circumstance. The purpose of this document is to define an interoperable means of collecting the vehicle/probe data in support of the use cases defined herein. There are many additional use cases that may be realized based on the interface defined in this document. Note that vehicle diagnostics are not included within the scope of this document, but diagnostics-related features may be added to probe data in a future supplemental document.
Standard

Cybersecurity Guidebook for Cyber-Physical Vehicle Systems

2021-12-15
CURRENT
J3061_202112
This recommended practice provides guidance on vehicle Cybersecurity and was created based off of, and expanded on from, existing practices which are being implemented or reported in industry, government and conference papers. ...Other proprietary Cybersecurity development processes and standards may have been established to support a specific manufacturer’s development processes, and may not be comprehensively represented in this document, however, information contained in this document may help refine existing in-house processes, methods, etc. ...This recommended practice establishes a set of high-level guiding principles for Cybersecurity as it relates to cyber-physical vehicle systems. This includes: Defining a complete lifecycle process framework that can be tailored and utilized within each organization’s development processes to incorporate Cybersecurity into cyber-physical vehicle systems from concept phase through production, operation, service, and decommissioning.
Magazine

SAE Truck & Off-Highway Engineering: October 2021

2021-10-07
Defending the heavy-vehicle cyber domain Cybersecurity experts explained at SAE COMVEC 2021 how they're preparing the next generation of thwarters to protect increasingly electrified, connected and automated trucks.
Journal Article

Real-Time Network Defense of SAE J1939 Address Claim Attacks

2021-08-30
Abstract Heavy vehicles are essential for the modern economy, delivering critical food, supplies, and freight throughout the world. Connected heavy vehicles are also driven by embedded computers that utilize internal communication using common standards. However, some implementations of the standards leave an opening for a malicious actor to abuse the system. One such abuse case is a cyber-attack known as the “Address Claim Attack.” Proposed in 2018, this attack uses a single network message to disable all communication to and from a target electronic control unit, which may have a detrimental effect on operating the vehicle. This article demonstrates the viability of the attack and then describes the implementation of a solution to prevent this attack in real time without requiring any intervention from the manufacturer of the target devices. The defense technique uses a bit-banged Controller Area Network (CAN) filter to detect the attack.
Standard

CAN FD Data Link Layer

2021-07-16
HISTORICAL
J1939-22_202107
The flexible data rate capability in CAN (commonly called CAN FD) is implemented as a transport layer in order to allow for functional safety, cybersecurity, extended transport capability, and backward compatibility with SAE J1939DA.
Magazine

SAE Truck & Off-Highway Engineering: June 2021

2021-06-01
No shortage of challenges Supply chain struggles join perennial challenges for Cummins' off-highway business, namely meeting shifting global emissions standards and satisfying emerging technology trends. Batteries not the only route to EV efficiency Allison CTO stresses efficiency and safety of propulsion units also are critical to reducing cost, improving performance and ultimately winning over customers. Batteries go underground A Saft expert evaluates various Li-ion chemistries and strategies - battery swapping vs. fast charging - for electric mining vehicles. Platooning: an evolving pathway to full autonomy Human-guided convoys can provide real-world benefits sooner than individual driverless trucks, but safety and operational issues still need to be resolved to optimize platoon configurations. Supplier Directory Complete listing of industry suppliers categorized by technology area.
Technical Paper

Secure Controller Area Network Logging

2021-04-06
2021-01-0136
Practical encryption is an important tool in improving the cybersecurity posture of vehicle data loggers and engineering tools. However, low-cost embedded systems struggle with reliably capturing and encrypting all frames on the vehicle networks.
Standard

CAN FD Data Link Layer

2021-03-22
HISTORICAL
J1939-22_202103
The flexible data rate capability in CAN (commonly called CAN FD) is implemented as a transport layer in order to allow for functional safety, cybersecurity, extended transport capability, and backward compatibility with SAE J1939DA.
Magazine

SAE Truck & Off-Highway Engineering: February 2021

2021-02-04
Bigger processors, smaller engines Engine designers are using electronics, networks to downsize engines while upping performance, efficiency and NVH characteristics. A testing powerhouse Allison Transmission's new Vehicle Environmental Test center in Indianapolis is open for business for external and in-house customers alike. 'Revolutionizing' digital hydraulics Volvo CE teams with Norrhydro to commercialize an advanced electro-hydraulic system that promises fuel-efficiency gains of up to 50%.
Magazine

SAE Truck & Off-Highway Engineering: August 2020

2020-08-06
Big future for e-axles, advanced motors Top transmission engineers claim driveline electrification will transform everything from all-wheel drive to Class 8 tractor-trailers. Big data's benefits keep a-comin' Gigabytes of data are being collected and increasingly mined to improve field operations, maintenance and even vehicle design. Transformative times Despite a challenging climate, technology development progresses - as does the sharing of innovative ideas - virtually. Editorial Zeroing in on zero emissions Softing envisions secure, reliable predictive maintenance Reconstructing accidents in the ADAS age Paving the way to improved truck fuel efficiency Nikola looks to accelerate production, hydrogen infrastructure Mecalac designs unique-pivoting swing loader Q&A' Horiba's Joshua Israel discusses complex regulatory landscape's impact on commercial-vehicle development and shift to electrification.
Standard

Requirements for a COTS Assembly Management Plan

2020-08-03
CURRENT
EIA933C
This document applies to the development of Plans for integrating and managing COTS assemblies in electronic equipment and Systems for the commercial, military, and space markets; as well as other ADHP markets that wish to use this document. For purposes of this document, COTS assemblies are viewed as electronic assemblies such as printed wiring assemblies, relays, disk drives, LCD matrices, VME circuit cards, servers, printers, laptop computers, etc. There are many ways to categorize COTS assemblies1, including the following spectrum: At one end of the spectrum are COTS assemblies whose design, internal parts2, materials, configuration control, traceability, reliability, and qualification methods are at least partially controlled, or influenced, by ADHP customers (either individually or collectively). An example at this end of the spectrum is a VME circuit card assembly.
X